導讀:考慮到通信設備商的數量較少,目前華為、諾基亞、愛立信、中興幾乎壟斷全球運營商無線通信市場份額,對于天線供應商來說下游將更為集中。
考慮到通信設備商的數量較少,目前華為、諾基亞、愛立信、中興幾乎壟斷全球運營商無線通信市場份額,對于天線供應商來說下游將更為集中。因此,與設備商有深度合作,并在大規(guī)模陣列天線有較多技術儲備的龍頭天線廠商將有望獲得更多市場。
【編者按】5G時代即將到來,第一批擁抱5G的企業(yè)在抓緊布局。本文從天線、PA、PCB、天線振子、濾波器、連接器等方向,深度探討5G基站端射頻產業(yè)鏈的發(fā)展新機遇。
MassiveMIMO,即大規(guī)模MIMO(Multiple-inputMultiple-output,多輸入多輸出)技術,旨在通過更多的天線大幅提高網絡容量和信號質量,原理上可類比高速公路拓展馬路道數來提高車流量。
采用MassiveMIMO的5G基站不但可以通過復用更多的無線信號流提升網絡容量,還可通過波束賦形大幅提升網絡覆蓋能力。
波束賦形技術通過調整天線增益空間分布,使信號能量在發(fā)送時更集中指向目標終端,以彌補信號發(fā)送后在空間傳輸的損耗,大幅提升網絡覆蓋能力。
相比較4G基站,采用支持大規(guī)模陣列天線技術的AAU是5G基站成本大幅增加的主要原因。
根據無線通信原理,為了保證天線發(fā)射和接收轉換效率最高,一般天線振子的間距必須要大于半個無線信號波長,而無線信號波長與無線信號頻率成反比(λ=c/f,其中c為光速,f即無線信號頻率),即當信號頻率越高,信號波長越小。
未來國內5G頻段或以3.5GHz和2.6GHz為主,根據此頻段得出半個波長大概是4.3cm/5.8cm。
根據目前的5G測試來看,目前采用64通道的MassiveMIMO技術是各個設備商的主流測試選擇。
雖然通道數越多,網絡的性能越高,但綜合考慮天線尺寸大小/重量、天線性能以及成本因素,目前運營商也在考慮低成本的MassiveMIMO方案—16通道。
我們認為,5G前期如果64通道天線成本未下降到運營商接受的范圍內,可能運營商在滿足部署和容量的情況下優(yōu)先考慮16通道方案。
4G 宏基站主要分三個部分天線、射 頻單元 RRU 和部署在機房內的基帶處理單元 BBU。
5G 網絡傾向于采用 AAU+CU+DU 的 全新無線接入網構架,如下圖所示。
天線和射頻單元 RRU 將合二為一,成為全新的單元 AAU(Active Antenna Unit,有源天線單元),AAU 除含有 RRU 射頻功能外,還將包含部 分物理層的處理功能。
5G時代,天線通道數增加以及天線有源化對天線設計提出更高要求,小型化及輕量化是基礎。
4G時代,天線形態(tài)基本是4T4R(FDD)或者8T8R(TDD),根據目前測驗的情況來看,5G時代可能以64T64R大規(guī)模陣列天線為主。
通道數同比增加了7-15倍,意味著天線對射頻器件需求量同比增加了7-15倍,同時天線無源部分將與RRU合為AAU,都對5G時代天線的體積及重量提出了更高的設計要求。
4G時代,無源天線+RRU重量大概在24-34kg,目前測試中的5GAAU重量大概在45kg左右,重量同比增加了32%~88%。所以在5G天線集成化的趨勢下,小型化及輕量化成為天線設計基礎。
如上文所述,我們預計5G商用宏基站將以64通道的大規(guī)模陣列天線為主。天線單元主要包括天線罩、輻射單元和校準網絡綜合板三個部分。
從當前5G產品的研發(fā)現狀來看,為實現波束賦形等新技術,我們預計未來64通道的天線陣列將容納64個功率放大器、64個開關、64個鎖相環(huán)、64個低噪聲放大器和64個濾波器等器件。
我們認為,射頻組件需求的提升將大幅提升基站射頻行業(yè)的市場空間,高度的集成化需求,也將推動濾波器、功率放大器等射頻組件工藝進一步升級,產品將更加的小型化。
采用MassiveMIMO的5G大規(guī)模天線不僅僅是數量的增加,天線的形式也將由無源轉向有源,可實現各個天線振子相位和功率的自適應調整,顯著提高MIMO系統(tǒng)的空間分辨率,提高頻譜效率,從而提升網絡容量。
另外,多天線振子的動態(tài)組合也可適用于波束賦形技術,從而讓能量較小的波束集中在一塊小型區(qū)域,將信號強度集中于特定方向和特定用戶,提高覆蓋范圍的同時提升用戶體驗。
因此,由于MassiveMIMO技術的采用,導致5G規(guī)模陣列天線復雜度的大幅提升,產品的價格也因此而大幅上漲。
與4G相比,大規(guī)模陣列天線的價格預計將大幅上升。與市場的普遍認知不同,天線的價格與天線單元數目的多少并非簡單的線性關系。
以4G天線為例,近期常用的4通道FDD電調天線售價約在1400元每副,8通道TDD電調天線的售價約為每副2000元,而到了5G時代,據當前實驗用5G基站的成本分析,初期64T64R規(guī)格的大規(guī)模陣列天線的天線單元(上游天線廠商制造部分)每扇區(qū)售價較貴,我們預計商用初期天線(AAU中無源天線+濾波器)采購價將達到8000元左右,隨著規(guī)模量產,我們預計未來每扇區(qū)的平均價格有望下降至3500元左右,但相較4G時期的平均天線價格仍然有較大幅度的提升。
5G天線市場空間同比增長124%~324%。假設5G建設周期為2020-2025年,預計建設高峰期(2020-2023年)宏基站天線市場每年空間可達114.2-184.4億元;相較4G建設高峰期國內平均每年約50多億元(高峰期4G基站一年建設數為100萬站,單幅天線平均價格1700元)的宏基站天線市場,5G市場空間同比增長124%~324%。
4G時代,華為躋身全球天線廠商第一。
根據全球權威第三方研究機構ABIResearch發(fā)布的2017年全球基站天線研究報告--《天饋現代化,引領移動寬帶網絡演進》,2012-2013年,華為天線市場份額排名第二/第三,經歷中國4G建設大潮,從2015年開始華為天線連續(xù)兩年蟬聯(lián)市場份額和技術創(chuàng)新及成果轉化能力第一,引領全球天線產業(yè)發(fā)展。
其中2016年各大廠商占比分比是華為31.6%、凱瑟琳21.0%、康普15.2%、安費諾7.3%、RFS5.2%,華為市場占有率比2013年有10.9pct的提升。
由于5G基站天線將與RRU融合形成新的單元AAU,天線公司的下游客戶將由以往的運營商轉變?yōu)樵O備商。
考慮到通信設備商的數量較少,目前市場的前四名(華為、諾基亞、愛立信、中興)幾乎壟斷全球運營商無線通信市場份額(基站設備市場占比在90%以上),對于天線供應商來說下游將更為集中。
因此,與設備商有深度合作,并且在大規(guī)模陣列天線有較多技術儲備的龍頭天線廠商將有望獲得更多的市場份額。
天線方面建議關注與設備商深度合作的上游企業(yè)。
隨著5G時代來臨,天線與基站設備實現更深層次的綁定,我們建議關注通宇通訊、世嘉科技、京信通信以及為華為公司天線產品提供精密加工服務的企業(yè)東山精密、鴻博股份(發(fā)布預案收購弗蘭德30%股權)、立訊精密。
天線振子是天線的核心部件。天線振子作為天線的主要組成部分,主要負責將信號放大和控制信號輻射方向,同樣可以使天線接收到的電磁信號更強。
根據天線的形態(tài),天線振子形態(tài)也包括多種多樣,有桿狀、面狀等;根據加工工藝,主要有鈑金、PCB、塑料等。傳統(tǒng)4G天線振子多以金屬鈑金為主。
從設備商測試情況來看,在熱點高容量地區(qū)優(yōu)先選擇64通道的天線設備,同時因為192振子天線設備相比128振子在覆蓋能力上能提升1.7dB,目前設備商測試64通道天線大都采用96個雙極化天線振子,即192個天線振子。
相較于現有4G網絡(視天線通道數的不同,一般為10-40個天線振子),5G天線含有的振子數將大幅增加。
雖然在高頻段更容易降低天線振子間的間距,實現多天線的設計以及產品的小型化,但其復雜度相較于現網天線產品依然會大幅提升。如下圖所示為5G大規(guī)模天線陣列原型機樣圖。
天線振子加工方式主要有金屬壓鑄/鈑金、PCB貼片和塑料振子,4G時代更多以金屬壓鑄/鈑金方式加工,組裝更多的靠人工,效率低下。
5G時代由于頻段更高且采用Massive-MIMO技術,天線振子尺寸變小且數量大幅增長,綜合考慮天線性能及AAU安裝問題,塑料天線振子方案具有一定的綜合優(yōu)勢。
一個基站需要三面天線,假設未來單面天線主流方案采用192振子,對應需要一個基站需要3*192=576個振子。
考慮當前塑料天線振子還未大規(guī)模量產,根據調研,初始期一對振子大約7元,進入成熟期價格可能下降到3元/對。
天線振子作為5G天線主要組成部分,可關注銀寶山新、碩貝德、飛榮達。
濾波器是射頻單元核心器件之一。
隨著移動基站支持的網絡頻段越來越多,濾波器成為射頻模塊中不可獲取的一部分,天線會將所有能接受到的頻段信號都送往射頻前端模塊,但我們只希望選擇特定頻段的信號進行處理,這時候就需要濾波器來消除干擾雜波,讓有用信號盡可能無衰減的通過,對無用信號盡可能的衰減。
5G時代,天線通道數增加以及天線有源化對天線設計提出更高要求,小型化及輕量化是基礎。
4G時代,天線形態(tài)基本是4T4R(FDD)或者8T8R(TDD),根據目前測驗的情況來看,5G時代可能以64T64R大規(guī)模陣列天線為主。
通道數同比增加了7-15倍,意味著天線對射頻器件需求量同比增加了7-15倍,同時天線無源部分將與RRU合為AAU,都對5G時代天線的體積及重量提出了更高的設計要求。
根據圖表30,4G時代,無源天線+RRU重量大概在24-34kg,目前測試中的5GAAU重量大概在45kg左右,重量同比增加了32%~88%。
所以在5G天線集成化的趨勢下,小型化及輕量化成為天線設計基礎。
3/4G時期,金屬濾波器憑借成熟的技術以及良好的性能成為那個時代的主流技術方案,進入5G時代設備商以及天線廠商也在研發(fā)小型化金屬腔體濾波器來滿足5G需求。
根據草根調研,按照單通道計算,小型化金屬腔體濾波器的重量平均比介質濾波器重20%左右。
正如上文所說,未來5G基站對器件的小型化及輕量化越來越重視,陶瓷介質濾波器在滿足性能的前提條件下,憑借輕量化、抗溫漂性能好以及小型化優(yōu)勢成為主設備商主要選擇方案之一。
考慮中國移動未來5G建設會基于2.6GHz頻段,2.6GHz16T16R天線單通道功率要求相比3.5GHz頻段64T64R天線更高,此時小型金屬腔體濾波器更占優(yōu),因此2.6GHz頻段下天線可能會選擇小型金屬化腔體濾波器。
陶瓷介質濾波器技術方案主要有介質腔體(Monoblock)和介質波導(Waveguide)。因為介質腔體方案承受功率較小,性能相比介質波導差,目前陶瓷介質濾波器主流技術方案為介質波導。
陶瓷介質濾波器性能由粉體配方及生產工藝決定。陶瓷介質濾波器性能主要由以下幾個因素決定:
1) 品質因素Q:Q越大,則濾波器插入損耗越小,意味著選頻特性越好,成本越低;當插入損耗為1dB,則信號功率被衰減20%,當插入損耗為3dB,則信號功率被衰減50%;
2) 介電常數εr:介電常數越高,有利于器件的小型化、集成化;
3) 諧振頻率溫度系數tf:通信器件的工作溫度是不斷變化的,溫度變化同樣會引起諧振頻率變化,該系數越小則溫漂引起的諧振頻率變化越?。?/p>
陶瓷介質濾波器上游材料主要有二氧鈦(TIO2)、氧化鋯(ZrO2)、氧化鋁(AIO3)、碳酸鋇(BaCO3)等,陶瓷介濾波器所需原材料量占整體上游原料比例較小,因此這些原材料采購方便。
根據產業(yè)鏈調研,原料合成即陶瓷介質粉體材料配方是決定濾波器性能好壞的關鍵因素之一,同時介質濾波器生產過程中需盡力控制工藝以制出雜質少、缺陷少、晶粒均勻分布的陶瓷,因此陶瓷介質濾波器性能由粉體配方及生產工藝決定。
目前國內濾波器廠商在3/4G都是以生產金屬濾波器為主,未來升級生產小型金屬腔體濾波器難度較小。
陶瓷濾波器產業(yè)鏈目前以華為為主導,國內能夠生產陶瓷介質濾波器的公司主要有未上市的燦勤科技,上市公司中主要有東山精密(艾福電子),武漢凡谷,風華高科(國華新材料),通宇通訊(江佳電子)以及北斗星通(佳利電子),港股上市公司京信通信表示也已經有介質波導濾波器生產能力。
海外能夠提供陶瓷介質濾波器主要有美國的CTS和日本的村田公司,其中美國CTS為介質濾波器鼻祖。
根據上文描述,運營商在5G實際建設中,可能根據覆蓋場景及容量要求選擇不同多天線方案(64T64R或者16T16R)。
電路板是組裝電子器件的關鍵互連件。
印制電路板(PCB),是指通用基材上按預定設計形成點間連接及印制元件的印制板,其主要功能是使各種電子零組件形成預定電路的連接,起中繼傳輸作用。不僅為電子元器件提供電氣連接,也承載著電子設備數字及模擬信號傳輸、電源供給和射頻微波信號發(fā)射與接收等業(yè)務功能,下游應用領域廣泛,因而被稱為“電子產品之母”。PCB種類較多,排除封裝基板,一般按照材質物理性質將PCB分為剛性版(單面板、雙面板、多層板)、撓性板、剛繞結合板等。
從產品結構來看,當前PCB市場中多層板仍占主流地位。
通信領域PCB板主要集中在無線、傳輸、數據通信等應用領域,產品涵蓋了背板、高速多層板、高頻微波板等。不同于消費電子類PCB產品多為撓性板(FPC)和高密度互聯(lián)印刷電路板(HDI),通信用PCB多為剛性多層板。
4G基站僅RRU+BBU有PCB需求。4G基站架構主要包括無源天線、射頻拉遠單元(RRU)和基帶單元(BBU),其中無源天線內部主要采用射頻線纜連接,RRU內PCB板主要包括射頻板,BBU內PCB板主要包括基帶板和背板。
如前文所述,5G基站架構中無源天線將和RRU合成新的單元-AAU,AAU將包含部分物理層功能;而BBU將可能拆分為CU和DU。
參考當前5G實驗網AAU設備的設計,預計每個AAU將包含2塊電路板:1個功分板,1個TRX板。功分板主要集成了功分網絡和校準網絡,一般為一個雙層板+一個四層板,或者集成在一個六層板;TRX板主要集成功率放大器(PA)+濾波器+64通道的收發(fā)信機、電源管理等器件集成在同一電路板上,一般為12-16層復合板。
由于AAU設備的內部連接更多采用PCB形式,5G時期單站PCB的數量相較4G時期會大幅提升。
高頻及高速要求推升單板價格,5GAAUPCB價值量提升7倍以上。
考慮到5G對天線系統(tǒng)的集成度提出了更高的要求。AAU射頻板需要在更小的尺寸內集成更多的組件。在這種情況下,為滿足隔離的需求,需要采用更多層的印刷電路板技術。
另外,AAU射頻電路板相較于4G時期的尺寸也會更大,考慮到5G基站發(fā)射功率的提升,工作頻段也更高,因此5G的射頻電路板對于材料的高速性能以及高頻性能也提出了更高的要求。
因此綜合來看,層數增加,尺寸增大,材料要求提升,5GAAUPCB板的價值量相較4GRRUPCB大幅提升。
國內天線射頻側PCB市場規(guī)模預計可達470.3億元。
經過測算,5G單基站射頻側PCB價值量約9120元,4G單基站射頻側PCB價值量約1080元,可以發(fā)現,單基站價值量提升7倍以上。
如上文所述,我們預計國內5G宏基站規(guī)??蛇_506.4萬站,考慮到近幾年PCB價格穩(wěn)定且略有上漲,假設PCB價格不變,對應5G時期射頻側PCB規(guī)模可達461.8億元。
綜合以上,我們認為5G基站電路板市場將有望量增價漲。
傳統(tǒng)與創(chuàng)新并進,國資收購功放標的有望填補A股空白3/4G時期以橫向擴散金屬氧化物半導體(LDMOS)工藝為主。
射頻功率放大器是無線發(fā)射機的核心部件,用以使無線信號具備足夠的發(fā)射功率向外輻射。
目前基站用功率放大器主要采用基于硅的橫向擴散金屬氧化物半導體(LDMOS)技術。
LDMOS有局限性,氮化鎵(GaN)成為中高頻段主要技術方向。未來5G商用頻段主要在3.5GHz附近,LDMOS技術在高頻應用領域存在局限性:LDMOS功率放大器的帶寬會隨著頻率的增加而大幅減少,LDMOS僅在不超過約3.5GHz的頻率范圍內有效,因此在3.5GHz頻段LDMOS的性能已開始出現明顯下滑。
除此之外,5G基站AAU功率大幅提升,單扇區(qū)功率從4G時期的50W左右提升到5G時期的200W左右,傳統(tǒng)的LDMOS制程將很難滿足性能要求。
隨著半導體材料工藝的進步,氮化鎵(GaN)正成為中高頻頻段PA主要技術路線,GaN技術優(yōu)勢包括能源效率提高、帶寬更寬、功率密度更大、體積更小,使之成為LDMOS的天然繼承者。
Massive-MIMO天線要求器件小型化,GaN尺寸為LDMOS尺寸1/6至1/4。
GaN相比LDMOS每單位面積可將功率提高4到6倍。
也就是說,相同發(fā)射功率規(guī)格下,GaN裸片尺寸為LDMOS裸片尺寸的1/6至1/4。
受基站內功率放大器尺寸要求和材料能量密度的限制,LDMOS在3.5GHz附近最大發(fā)射功率會大幅度下降,導致需要更多LDMOS器件,基于此,GaN具有更高功率密度特性,能夠實現更小器件封裝,因而非常適用于5G的Massive-MIMO天線系統(tǒng)。
參考目前實驗5G基站的上游采購價格,目前用于3.5GHz頻段的5G基站,采用LDMOS工藝的功率放大器單扇區(qū)的價格大約超過了400美金,采用GaN工藝的功率放大器價格更是超過了700美金。
而當前4G功放單扇區(qū)的價格200美金左右,5G功率放大器的價格達到了4G時期的2~3.5倍。
GaN技術雖然性能出眾,但考慮到GaN昂貴的成本,預計初期5G功率放大器可能會以LDMOS與GaN混合為主,隨著成本的不斷下降,后續(xù)逐漸被GaN完全取代。
考慮到功率放大器行業(yè)的壟斷性,我們預計5G規(guī)模建網期間降價空間比較有限。
在4G建設高峰期,國內市場平均每年功率放大器的市場空間約在42億元??紤]到單站功率放大器價格的大幅提升,到了5G時代,單站價格的大幅上漲將推動功率放大器的總市場空間大幅提升,假設5G建設周期為2020-2025年,預計建設高峰期(2020-2023)宏基站功率放大器市場空間每年可達約108.2-188.9億元,相較4G規(guī)模建設期,市場空間同比增長158%-350%。
傳統(tǒng)基站功率放大器領域,主要由恩智浦(NXP)、飛思卡爾(Freescale)和英飛凌(Infineon)三家公司壟斷,2015年NXP完成收購Freescale,為了規(guī)避反壟斷調查,NXP便將自己的RFPower部門以18億美元的價格出售給國內的北京建廣資本,收購的恩智浦RFPower部門現改組為Ampleon公司,截止到2016年底,Ampleon在全球基站功率放大器領域的市場占有率達到了約38%,排名世界第二。
2018年6月,國內A股上市公司旋極信息發(fā)布公告,與合肥瑞成股東之一北京嘉廣資產管理中心簽訂《合作意向書》,擬購買其持有的合肥瑞成股權,從而間接收購Ampleon股權。
未來,隨著毫米波等高頻段技術的成熟,GaN作為主流技術將成為必然,化合物半導體相關產業(yè)鏈公司將深度受益。
3/4G時期以饋電網絡方式存在,通過饋線連接。
3/4G時期,天線與RRU之間、天線內部天線振子與射頻器件相連都是通過饋線連接。
天線與RRU之間的射頻饋線主要包括主饋線和跳線,跳線為基站天線和主饋線、主饋線和BTS之間提供連接,一般為1/2”電纜;主饋線為機房到天線平臺之間連接,一般采用7/8”電纜。
天線內部饋線主要為半柔電纜。
5G時代天線有源化,AAU內功分網絡和基帶處理板將以PCB形式存在,傳統(tǒng)饋線連接方式已不能滿足需求,此時板對板之間需要由射頻連接器進行連接。
盲插型連接器分別電連接在天線射頻通道的輸入端和收發(fā)組件的輸出端口,盲插型連接器的種類和形式較多,可以自由選型。
SMP板對板連接器組件是一個浮動的結構,由一個與PCB焊接連接的snap座子,另一個與PCB焊接連接的slide座子以及中間的轉接器bullet構成。
兩個座子分別焊接在兩塊PCB板上,三個連接器與兩塊PCB板組成一個連接器電路板組件。
國內連接器的主要廠商:西安華達、金信諾、中航光電(電連接器產品在航空領域市場占有率達60%)、通茂電子(6908廠子公司)、中電科55所等。
海外連接器主要廠商:TEConnectivity泰科電子(美國)、Amphenol安費諾(美國)、Rosenberger羅森伯格(德國)、RADIALL雷迪埃(法國)等。
射頻連接器市場可達94.4億元。一個基站需要三面天線,假設未來單面天線主流方案采用64T64R,對應一個基站需要盲叉連接器的數量為66*3=198個。
根據草根調研目前SMP盲插連接器國內廠商價格大概15元/個,未來成熟期有望下降到6元/個。假設5G建設周期為2020-2025年,預計建設高峰期(2020-2023)宏基站連接器市場空間每年可達約14.1-26.8億元。