技術(shù)
導(dǎo)讀:隨著雙碳目標(biāo)的推進(jìn),電動(dòng)汽車車載充電器(以下簡稱“OBC”),正朝雙向能量傳輸?shù)姆较虬l(fā)展,其既能從電網(wǎng)獲取電能,又可將電能反饋至電網(wǎng)。
隨著雙碳目標(biāo)的推進(jìn),電動(dòng)汽車車載充電器(以下簡稱“OBC”),正朝雙向能量傳輸?shù)姆较虬l(fā)展,其既能從電網(wǎng)獲取電能,又可將電能反饋至電網(wǎng)。配置了雙向OBC的電動(dòng)汽車,可用剩余電量為耗盡電量的電動(dòng)汽車充電,也可在戶外充當(dāng)220 V電源,還可被當(dāng)作分布式儲(chǔ)能站,幫助電網(wǎng)消峰填谷。本文將探討CLLC拓?fù)湓陔p向OBC應(yīng)用中的設(shè)計(jì)挑戰(zhàn)和安森美(onsemi)的6.6 kW CLLC參考設(shè)計(jì)如何解決這些挑戰(zhàn)。
什么是CLLC拓?fù)?/strong>
如圖1所示,隔離DCDC是構(gòu)成雙向OBC的主要組成部分之一。在200 W以上隔離DCDC應(yīng)用中,包括單向OBC,很多都會(huì)用到LLC拓?fù)?,因?yàn)樗哂心苄Ц摺MI表現(xiàn)好、開發(fā)難度低等優(yōu)勢,但這種拓?fù)渲荒苡糜趩蜗蚰芰總鬏敗?/p>
圖1:雙向OBC框圖
大部分的雙向OBC中隔離DCDC級都會(huì)采用CLLC拓?fù)?。CLLC拓?fù)?如圖2所示)是將LLC拓?fù)渲须姵貍?cè)的橋式整流二極管換成有源橋,然后再在變壓器的電池端串上一個(gè)C來確保磁平衡。給電池充電的時(shí)候,左側(cè)的橋做主動(dòng)開關(guān),右側(cè)的橋做同步整流;當(dāng)電池向外做逆變的時(shí)候,右側(cè)的橋做主動(dòng)開關(guān),左側(cè)的橋做同步整流。CLLC繼承了LLC拓?fù)涞奶攸c(diǎn),采用脈沖頻率調(diào)節(jié)來控制增益,具有同樣的軟開關(guān)特性,因此,能效高,EMI表現(xiàn)好,簡單,但存在增益調(diào)整范圍窄、難以滿足寬廣的電池電壓變化范圍的挑戰(zhàn)。為此,安森美推出一個(gè)6.6 kW CLLC參考設(shè)計(jì)SEC-6K6W-CLLC-GEVK,它采用寬母線電壓范圍來應(yīng)對電池電壓變化,峰值能效超過98%,幫助設(shè)計(jì)人員解決挑戰(zhàn),加快開發(fā)。
圖2:CLLC拓?fù)?/p>
圖3:6.6 kW CLLC參考設(shè)計(jì)SEC-6K6W-CLLC-GEVK的峰值能效超過98%
6.6 kW CLLC參考設(shè)計(jì)SEC-6K6W-CLLC-GEVK
安森美的6.6 kW CLLC參考設(shè)計(jì)SEC-6K6W-CLLC-GEVK包括三個(gè)主要部分,如圖4:中間那片大板是功率板,所有高壓大電流的線路都在這片板上。右上角是控制板,通過接插件和功率板相連,方便大家在不同的控制和功率方案之間做交叉測試。左側(cè)是諧振腔組合,包含了一個(gè)集成了諧振電感的變壓器和兩個(gè)諧振電容板。諧振電容由多顆MLCC經(jīng)串并聯(lián)組成,以在滿足耐壓和電流的要求下實(shí)現(xiàn)更小體積。諧振腔也是可拆卸的,方便設(shè)計(jì)人員驗(yàn)證不同的變壓器、電感和電容參數(shù)。方案中包含了散熱器、風(fēng)扇、輔助電源、保護(hù)電路等等。連接電源和負(fù)載就可以在滿載下做長時(shí)間測試。
圖4:6.6 kW CLLC參考設(shè)計(jì)SEC-6K6W-CLLC-GEVK
功率板中,位于母線側(cè)和電池測的兩個(gè)有源橋分別由四顆1200 V/40毫歐NVHL040N120SC1和四顆900 V/20毫歐NVHL020N090SC1碳化硅(SiC) MOS構(gòu)成。SiC可比Si實(shí)現(xiàn)更高的功率密度、更高的開關(guān)頻率和極高效的設(shè)計(jì)。驅(qū)動(dòng)這八顆SiC MOS的是八顆磁隔離大電流驅(qū)動(dòng)器。驅(qū)動(dòng)信號(hào)由控制板通過控制接口送出。
控制接口的所有信號(hào)都位于電池側(cè),電平不超過12 V。電池端的電壓、電流通過采樣完通過分壓、放大后直接送到控制接口。母線側(cè)的電壓采樣由一顆獨(dú)立的ADC來完成,數(shù)據(jù)通過SPI總線再經(jīng)數(shù)字信號(hào)隔離器傳到控制接口。
控制板中,我們選用了一顆車規(guī)級的LLC控制芯片NCV4390,來做脈沖頻率調(diào)制 (以下簡稱“PFM”) 和同步整流控制;用低功耗MCU,來做充電的恒壓值設(shè)定;用車規(guī)級軌到軌運(yùn)放NCV33204來做恒流充電控制;再配上我們的車規(guī)級邏輯器件來做電網(wǎng)到電池和電池到電網(wǎng)方向的判斷和轉(zhuǎn)換。
電路細(xì)節(jié)的設(shè)計(jì)考量
如果想要節(jié)省成本,可以把1200 V和900 V SiC MOS換成900 V和650 V SiC MOS,但需要控制好開關(guān)尖峰,最好從降低PCB寄生電感著手,可以通過添加旁路電容實(shí)現(xiàn)。
高電壓低Rdson的SiC MOSFET,它的Qg很大,為了在高開關(guān)頻率下維持高效,必須用大電流的門極驅(qū)動(dòng)器來驅(qū)動(dòng)。另外,我們方案的控制接口位于電池側(cè),驅(qū)動(dòng)母線側(cè)的MOS必須要隔離,而且要符合安規(guī)。雖然驅(qū)動(dòng)電池側(cè)的MOS不需要安規(guī),但是為了統(tǒng)一物料,我們還是選用相同的器件NCV57000,短路保護(hù)和故障報(bào)告功能是其亮點(diǎn)。
隔離門極驅(qū)動(dòng)的另一個(gè)不錯(cuò)的選擇是NCV51561同樣帶安規(guī)隔離,驅(qū)動(dòng)電流更大,一推二,延時(shí)更短。雖然沒有過流保護(hù),但它的雙高禁止功能也能保護(hù)到來自信號(hào)端的,由于干擾或誤操作而造成的炸機(jī)風(fēng)險(xiǎn)。
選擇高壓輔助電源的最佳拓?fù)?/strong>
該6.6 kW CLLC參考設(shè)計(jì)的輔助電源采用了“反激 + Buck-boost”的拓?fù)湟詰?yīng)對高達(dá)750 V的母線電壓,如表1,相較其他3種拓?fù)?,這種反激+Buck-boost拓?fù)湓诔杀尽⒛苄?、輸入電壓下限、可靠性、母線電容分壓平衡方面都更勝一籌。
表1:800 V 輸入電壓下可選的高壓輔助電源拓?fù)?/p>
選擇為高邊門極驅(qū)動(dòng)供電的最佳方案
輔助電源設(shè)計(jì)當(dāng)中的另外一個(gè)挑戰(zhàn),是多組且隔離的電源軌。該6.6 kW CLLC參考設(shè)計(jì)總共需要7組電源軌。
SiC驅(qū)動(dòng)需要負(fù)壓,且SiC MOS的Vcc容差范圍較窄,所以不宜采用自舉,否則會(huì)帶來穩(wěn)壓、時(shí)序、功耗、噪聲等諸多問題。而如果采用隔離DCDC,會(huì)存在PCB占位、成本和噪聲干擾等問題。第3種方法是通過變壓器繞組來輸出所有電壓,這是這幾種方法里成本最低的一種,但缺點(diǎn)是工藝不好控制,易出錯(cuò),噪聲干擾大。我們的6.6 kW CLLC參考設(shè)計(jì)采用的脈沖變壓器擴(kuò)展繞組解決了上述3種方法的所有問題,更重要的是它大大縮短了動(dòng)點(diǎn)引線的長度。
雙沿跟蹤自適應(yīng)同步整流控制
前面提到,在控制板中采用LLC控制器NCV4390來做PFM環(huán)路和同步整流控制。NCV4390采用電流模式,環(huán)路響應(yīng)快,不易震蕩,自帶雙沿跟蹤同步整流控制功能,在PFM模式和間歇工作模式之間插入了一段PWM工作模式,目的是改善輕載下的能效和電壓紋波,而且NCV4390的保護(hù)功能也非常強(qiáng)大。值得強(qiáng)調(diào)的是,這種雙沿跟蹤同步整流控制方法已獲市場驗(yàn)證是非??孔V的。
總結(jié)
電動(dòng)汽車OBC正朝向雙向能量傳輸?shù)姆较虬l(fā)展,以配合雙碳目標(biāo)的推進(jìn)。隔離DCDC是構(gòu)成雙向OBC的主要組成部分之一。大部分的雙向OBC中隔離DCDC級都會(huì)采用CLLC拓?fù)?。安森美?.6 kW CLLC參考設(shè)計(jì)SEC-6K6W-CLLC-GEVK,基于SiC MOS,峰值能效超過98%,還解決了CLLC拓?fù)湓陔p向OBC應(yīng)用中的PCB占位、噪聲干擾、可靠性和成本等諸多設(shè)計(jì)挑戰(zhàn),它采用硬件控制器來做PFM控制,幫助設(shè)計(jì)人員加快開發(fā)。